Universality in the two-matrix model: a Riemann-Hilbert steepest-descent analysis

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universality in the Two Matrix Model: a Riemann-hilbert Steepest Descent Analysis

The eigenvalue statistics of a pair (M1,M2) of n × n Hermitian matrices taken random with respect to the measure 1 Zn exp ` − nTr(V (M1) +W (M2)− τM1M2) ́

متن کامل

A Steepest Descent Method for Oscillatory Riemann-hilbert Problems

but it will be clear immediately to the reader with some experience in the field, that the method extends naturally and easily to the general class of wave equations solvable by the inverse scattering method, such as the KdV, nonlinear Schrödinger (NLS), and Boussinesq equations, etc., and also to "integrable" ordinary differential equations such as the Painlevé transcendents. As described, for...

متن کامل

The global parametrix in the Riemann-Hilbert steepest descent analysis for orthogonal polynomials

In the application of the Deift-Zhou steepest descent method to the Riemann-Hilbert problem for orthogonal polynomials, a model Riemann-Hilbert problem that appears in the multi-cut case is solved with the use of hyperelliptic theta functions. We present here an alternative approach which uses meromorphic differentials instead of theta functions to construct the solution of the model Riemann-Hi...

متن کامل

Nonlinear steepest descent and the numerical solution of Riemann–Hilbert problems

The effective and efficient numerical solution of Riemann–Hilbert problems has been demonstrated in recent work. With the aid of ideas from the method of nonlinear steepest descent for Riemann– Hilbert problems, the resulting numerical methods have been shown numerically to retain accuracy as values of certain parameters become arbitrarily large. The primary aim of this paper is to prove that t...

متن کامل

Semiclassical asymptotics of orthogonal polynomials , Riemann - Hilbert problem , and universality in the matrix model

We derive semiclassical asymptotics for the orthogonal polynomials P n (z) on the line with respect to the exponential weight exp(−NV (z)), where V (z) is a double-well quartic polynomial, in the limit when n, N → ∞. We assume that ε ≤ (n/N) ≤ λ cr − ε for some ε > 0, where λ cr is the critical value which separates orthogonal polynomials with two cuts from the ones with one cut. Simultaneously...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications on Pure and Applied Mathematics

سال: 2009

ISSN: 0010-3640,1097-0312

DOI: 10.1002/cpa.20269